Типовые проекты Скачать проект
Форма обратной связи
8 (800) 444-22-51 Звонок по России бесплатный snabsbit@cesis.ru Отдел продаж
Форма обратной связи

Методика расчета основных элементов противотаранного устройства

Н.А. Шалашилин, главный конструктор ЗАО «ЦеСИС НИКИРЭТ» Д.А. Тарасов, начальник архитектурно-строительной группы ЗАО «ЦеСИС НИКИРЭТ» Закрытое акционерное общество «Центр специальных инженерных со-оружений научно-исследовательского и конструкторского института радиоэлектронной техники» (ЗАО «ЦеСИС НИКИРЭТ»), г.Пенза

­           Расчет прочности любой конструкций состоит из двух последовательных этапов. Первый этап: определение усилий в элементах рассчитываемой конструкции. Второй этап: расчет сечений на полученные усилия. ­           Для определения усилий и дальнейшего расчета сечений элементов конструкции необходимо создать расчетную схему и приложить к ней нагрузки, действующие на конструкцию. В нашем случае определяющей нагрузкой, действующей на противотаранное устройство (ПТУ), является ударная нагрузка от тела массой 20 тонн, движущегося со скоростью 40 км/ч. ­           Явление удара получается в том случае, когда скорость ударяющего тела за очень короткий промежуток времени изменяется и в нашем случае падает до нуля; тело останавливается. Значит, на него от стрелы барьера передаются очень большие ускорения, направленные в сторону, обратную его движению, т.е. передается реакция Рd, равная произведению массы ударяющего тела на это ускорение. Обозначая это ускорение через а, можно написать, что реакция

­           Q Pd = ___ * a ­            g

где Q – вес ударяющего тела; g – ускорение свободного падения. ­           По закону равенства действующих и противодействующих сил на стрелу барьера передается такая же сила, но обратно направленная. Эти силы и вызывают усилия в стреле барьера и ударяющем теле. Таким образом, в стреле барьера возникают такие усилия, как будто к ней была приложена сила инерции ударяющего тела; мы можем вычислить эти усилия, рассматривая силу инерции Рd как статическую нагрузку, приложенную к стреле барьера. Затруднение заключается в вычислении этой силы инерции. Мы не знаем, продолжительности удара, т.е. величины того промежутка времени, в течение которого происходит падение скорости ударяющего тела до нуля. Поэтому остается неизвестной величина ускорения а, а стало быть, и силы Рd. Для вычисления силы Рd и связанных с ней усилий и деформаций необходимо воспользоваться законом сохранения энергии. ­          При ударе за очень короткий промежуток времени происходит превращение одного вида энергии в другой: кинетическая энергия ударяющего тела превращается в потенциальную энергию деформации стрелы барьера. Выражая эту энергию в функции силы Рd или усилий, или деформаций, мы получаем возможность вычислить эти величины. ­          Решение данной задачи строится на основе приближенной теории упругого удара, в которой принимаются следующие допущения: ­          Первое. Кинетическая энергия ударяющего тела полностью переходит в потенциальную энергию деформации стрелы барьера; при этом не учитывается энергия, идущая на деформацию самого ударяющего тела и остальных частей ПТУ. ­          Второе. Закон распределения усилий и деформаций по всему объему ПТУ остается таким же, как и при статическом действии сил. При этом не учитывается изменение распределения усилий и деформаций в том мес-те, где происходит соударение тела со стрелой барьера, а также за счет колебаний высокой частоты, сопровождающих явление удара во всем объеме ПТУ. ­          Первое допущение идет в запас прочности стрелы барьера, так как ставит её в худшие условия работы, чем это имеет место в действительности; второе допущение дает дополнительные усилия для наиболее напряженных частей ПТУ. ­          Справедливость выше изложенной теории проверена экспериментально на установке для исследования прогибов балки при ударной нагрузке. Балка установки изготовлена из углеродистой стали, имеет расчетный пролет L=25 см и прямоугольное поперечное сечение высотой 0,1 см и шириной 3,75 см. Ударяющее тело представляет собой стальной цилиндр массой Q=200 г. Поверхность удара – основание цилиндра. Высота падения H=20 см. Опытное значение прогиба оказалось равным 19 мм. Теоретический прогиб балки от динамической нагрузки, полученный при расчете по теории упругого удара равен 23 мм, что дало расхождение с опытным значением 17 %. Таким образом, предложенная теория удара для объекта хорошо соотносится с опытом. ­          После того как вычислены усилия в конструкции, можно перейти ко второму этапу расчета прочности: расчету сечений элементов на полученные усилия. ­          Основными элементами ПТУ, воспринимающими усилия от удара движущегося тела, являются стальные канаты, расположенные внутри стрелы барьера. ­          Великий русский инженер и ученый Владимир Григорьевич Шухов в опубликованной в 1897 г. книге «Стропила. Изыскание рациональных типов прямолинейных стропильных ферм и теория арочных ферм» впервые доказал, что прочность материала используется наилучшим образом, если он работает на усилия сжатия либо растяжения, и наихудшим, — если на изгиб. Убедимся в правильности этого постулата Шухова в результате простых выкладок и рассуждений. Напряжения σ от осевого растяжения (или осевого сжатия) силой N, приложенной к элементу сечением b⋅h, таково:

­          N σ= ____ ­        b*h ­         В изгибаемом элементе тем же сечением b⋅h и пролетом 8⋅h, загру-женным силой N посередине пролета: ­         M σ= ____ ­         W Подставив сюда значения изгибающего момента ­          N*8*h M= _______= 2*N*h ­              4 и момента сопротивления сечения ­         b*h^2 W= ______ ­             6 получим ­        2*N*h*6 σ= ________ ­          b*h^2 а после сокращения ­         12*N σ= ______ ­           b*h ­          Сопоставляя оба значения напряжений, приходим к выводу, что напряжения в изгибаемом элементе в 12 раз больше, чем в растянутом (либо сжатом), хотя оба они нагружены одинаковой силой N и имеют одинаковые сечения b⋅h. Иначе, при одинаковых напряжениях в материале, растянутый (либо сжатый) элемент несет нагрузку, в 12 раз большую, чем изгибаемый элемент того же поперечного сечения, причем, чем больше пролет изгибаемого элемента, тем больше он проигрывает в сопоставлении с рас-тянутым (либо сжатым) элементом того же поперечного сечения. ­          Поэтому основными рабочими элементами ПТУ приняты стальные канаты, так как они работают только на растяжение. Работа на растяжение, позволяющая полностью использовать всю площадь сечения стального каната, и высокая прочность материала приводят к тому, что общий вес ПТУ снижается. ­­         Условие прочности стальных канатов имеет вид неравенства. Суммарное значение разрывного усилия стальных канатов должно быть больше максимального усилия в канатах от силы инерции – Рd. n*P>N, где n – количество стальных канатов; P – значение разрывного усилия одного стального каната; N – максимальное усилие в стальных канатах от силы инерции – Рd. ­        Неотъемлемой частью ПТУ является фундамент. Фундаментом называется подземный конструктивный элемент, воспринимающий нагрузки от надземной части сооружения и передающий их на основание. ­        Конструктивное решение фундамента определяется многими факторами. Одни из основных: вид конструкции, опирающейся на фундамент; величина и характер нагрузок, передаваемых на него. Фундамент ПТУ мелкого заложения на естественном основании является комбинацией столбчатого и плитного фундамента, состоящий из двух монолитных железобетонных тумб объединенных между собой монолитной железобетон-ной плитой. Количество и целесообразность устройства монолитных железобетонных тумб определяется конструктивной схемой ПТУ. Нагрузка от ударяющего тела передается на фундамент через раму и замковую часть, поэтому под ними устраиваются две монолитные железобетонные тумбы. ­        Характерной особенностью фундаментов мелкого заложения на естественном основании является передача нагрузки на основание через раз-витую подошву фундамента, поэтому монолитные железобетонные тумбы объединяются между собой монолитной железобетонной плитой, через которую нагрузки от вышележащих элементов изделия передаются на основание. Так же функция монолитной железобетонной плиты заключается в недопущении неравномерности осадок рамы и замковой части ПТУ, что может привести к заклиниванию стрелы барьера. ­        Расчет фундамента производят при соблюдении следующих условий: осадка сооружения не должна превосходить нормативные значения, для чего фундамент рассчитывают по деформациям грунта основания. Напряжения в грунтах основания должны быть не более расчетного давления на грунт основания, исходя из чего определяют размеры подошвы фундамента. Напряжения в элементах конструкции фундамента не должны превышать расчетное сопротивление материала фундамента. При воздействии внешних горизонтальных сил и изгибающих моментов фундамент проверяют на устойчивость к опрокидыванию и скольжению.